\(\leftarrow\) Back to Chapters
if \(\overline{B} = AD\) then \(A\overline{B}=\overline{B}\):
\(\overline{B} = AD\)
\(A\overline{B} = AAD\)
\(A\overline{B} = AD\)
\(A\overline{B} = \overline{B}\)
\(\square\)
if \(\overline{B} = AD\) then \(B\overline{A}=\overline{A}\):
\(\overline{B} = AD\)
\(A+\overline{B} = A+AD\)
\(A+\overline{B} = A\) using absorption laws, which can be proved with a truth table
\(\overline{A}B = \overline{A}\)
\(\square\)